2,162 research outputs found

    Multi-scale coarse-graining of diblock copolymer self-assembly: from monomers to ordered micelles

    Full text link
    Starting from a microscopic lattice model, we investigate clustering, micellization and micelle ordering in semi-dilute solutions of AB diblock copolymers in a selective solvent. To bridge the gap in length scales, from monomers to ordered micellar structures, we implement a two-step coarse graining strategy, whereby the AB copolymers are mapped onto ``ultrasoft'' dumbells with monomer-averaged effective interactions between the centres of mass of the blocks. Monte Carlo simulations of this coarse-grained model yield clear-cut evidence for self-assembly into micelles with a mean aggregation number n of roughly 100 beyond a critical concentration. At a slightly higher concentration the micelles spontaneously undergo a disorder-order transition to a cubic phase. We determine the effective potential between these micelles from first principles.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Lett

    Kinetics of Surfactant Adsorption at Fluid/Fluid Interfaces: Non-ionic Surfactants

    Full text link
    We present a model treating the kinetics of adsorption of soluble surface-active molecules at the interface between an aqueous solution and another fluid phase. The model accounts for both the diffusive transport inside the solution and the kinetics taking place at the interface using a free-energy formulation. In addition, it offers a general method of calculating dynamic surface tensions. Non-ionic surfactants are shown, in general, to undergo a diffusion-limited adsorption, in accord with experimental findings.Comment: 6 pages, 3 figures, see also cond-mat/960814

    Changes in Circulating Angiogenic Cell Number and Function During and After an Ultramarathon

    Get PDF
    Click the PDF icon to download the abstract

    An Axial Time-of-flight Mass Spectrometer for Upper Atmospheric Measurements

    Get PDF
    As the “shoreline” of the Earth’s atmosphere, the mesosphere/lower thermosphere (MLT) region is home to many interesting and important phenomena, the most visible of which are the auroras. Geomagnetic storms, in addition to causing very intense auroral activity, also deposit large amounts of energy into the earth’s ionosphere. Recent analysis of data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument aboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite suggests that 5.3ÎŒm emission from vibrationally excited NO is the main method of energy dissipation from energy deposited by geomagnetic storms. Additionally, NO+ has been shown to be the major contributor to geomagnetic storm induced 4.3ÎŒm nighttime emission. In order to better physically understand these two large sources of geomagnetic storm energy dissipation, a sounding rocket mission, ROCKet-borne Storm Energetics of Auroral Dosing in the E-region (ROCK-STEADE) is being proposed. The ROCK-STEADE instrument suite consists of several photometers, an interferometer, an IR spectrometer, and two time-of-flight mass spectrometers (TOFMS). The TOFMS will measure the ion and neutral compositions in the atmosphere as the sounding rocket travels through the MLT. Due to the use of microchannel plate (MCP) detectors in TOFMS, one of the major challenges to making measurements in the MLT is the high ambient pressure. Other challenges and sources of error and background include stray UV photons, scattering of gas molecules from the interior surfaces of the instrument, dissociation of molecules in the bow shock caused by the supersonic rocket flight, and reactive recombination at the surfaces of the instrument. Methods of dealing with these challenges include: ‱ Recent advances in MCP technology allowing MCP operation into the mtorr range ‱ Cooling the front surface of the TOFMS using liquid He to eliminate the bow shock (thus making possible the direct sampling of the ambient atmosphere) ‱ Cryogenically cooling the interior of the instrument to eliminate scattering of gas from instrument walls and therefore also reducing the contribution of reactive recombination ‱ Rigorous error analysis to account for the background contribution of stray U

    Age Differences in the Association of Obstructive Sleep Apnea Risk with Cognition and Quality of Life

    Get PDF
    Using a sample of 2925 stroke-free participants drawn from a national population-based study, we examined cross-sectional associations of obstructive sleep apnea risk (OSA) with cognition and quality of life and whether these vary with age, while controlling for demographics and co-morbidities. Included participants from the REasons for Geographic And Racial Differences in Stroke Study were aged 47-93. OSA risk was categorized as high or low based on responses to the Berlin Sleep Questionnaire. Cognitive function was assessed with standardized fluency and recall measures. Depressive symptoms were assessed with the four-item Center for Epidemiologic Studies Depression Scale. Health-related Quality of Life (HRQoL) was assessed with the Medical Outcomes Study Short Form-12 (SF-12). MANCOVA statistics were applied separately to the cognitive and quality of life dependent variables while accounting for potential confounders (demographics, co-morbidities). In fully adjusted models, those at high risk for OSA had significantly lower cognitive scores (Wilks’ Lambda = 0.996, F(3, 2786) = 3.31, p < .05) and lower quality of life (depressive symptoms and HRQoL) (Wilks’ Lambda = 0.989, F(3, 2786) = 10.02, p < .0001). However, some of the associations were age-dependent. Differences in cognition and quality of life between those at high and low obstructive sleep apnea risk were most pronounced during middle age, with attenuated effects after age 70
    • 

    corecore